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ABSTRACT
Educational content of today no longer only resides in textbooks

and classrooms; more and more learning material is found in a

free, accessible form on the Internet. Our long-standing vision is to

transform this web of educational content into an adaptive, web-

scale “textbook”, that can guide its readers to most relevant “pages”

according to their learning goal and current knowledge. In this

paper, we address one core, long-standing problem towards this

goal: identifying outcome and prerequisite concepts within a piece

of educational content (e.g., a tutorial). Speci�cally, we propose

a novel approach that leverages textbooks as a source of distant

supervision, but learns a model that can generalize to arbitrary

documents (such as those on the web). As such, our model can

take advantage of any existing textbook, without requiring expert

annotation. At the task of predicting outcome and prerequisite

concepts, we demonstrate improvements over a number of baselines

on six textbooks, especially in the regime of li�le to no ground-truth

labels available
1
. Finally, we demonstrate the utility of a model

learned using our approach at the task of identifying prerequisite

documents for adaptive content recommendation — an important

step towards our vision of the “web as a textbook”.

1 INTRODUCTION
Amazon.com sells nearly 3 million textbooks, subsuming knowl-

edge of virtually every discipline known to man. �e information

contained in these books, however, goes beyond the explicit knowl-

edge recorded by the authors. Embedded in these books, is less

tangible, implicit knowledge of how instructors communicate new

concepts through previously explained concepts.

�e value of this knowledge is ampli�ed as more up-to-date

educational material �nds itself outside textbooks, and on the web

[3]. �e knowledge of how experts communicate new concepts

through writing, re�ected in the textbooks they write, provides the

valuable data source for training machine learning models that can

be deployed on educational content outside textbooks (e.g., we can

identify which concepts the author of a web tutorial explains and

1
textbooks are used for both evaluation and training
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Figure 1: Textbooks are a natural source of supervision for
learning a classi�er to predict outcomes and prerequisites in
educational texts. Our work explores the rich knowledge
encoded in the structure of books to learn such classi�ers.

which they assume as prior knowledge). In this paper, our focus
is on exploiting textbooks as a rich source of supervision for
training such models.

�e problem with textbooks as a source of supervision, however,

is that they are inherently noisy. Rarely do authors explicitly state

which concepts they explain in each section (i.e., outcome concepts)

and which they assume as prerequisites – the kind of annotation that

could be directly exploited to learn a classi�er for discriminating

between outcome and prerequisite concepts. Even if they did, the

annotation would likely be inconsistent across di�erent textbooks

and authors. Instead, authors tend to reveal this information in an

implicit way, via indirect signals that manifest themselves in the

structure of the textbook. Two such indirect signals that we exploit

in this work are:

• Supervision Source 1: Unit Sequence
Our hypothesis is that the author usually explains a concept

in one place (e.g., a chapter or a section).

• Supervision Source 2: Unit Titles
Our hypothesis is that the author of a textbook is more

likely to include the concept’s name in the title of a unit

(e.g., chapter or section) if the concept is an outcome concept.

Neither of these signals, of course, will directly reveal whether a

concept is an outcome or a prerequisite. A concept may sometimes

be explained (i.e., an outcome) even if it’s not mentioned in the

title (Source 2). Similarly, knowing that a concept is explained

in one place says nothing about where (Source 1). Nevertheless,

our hope is that these signals provide a clue, even if a noisy or
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incomplete one, that can be exploited by a model that is intimately

aware of how these indirect signals and the concept labels (i.e.,

outcome vs. prerequisite) are ultimately connected. For our task of

learning a prerequisite/outcome classi�er (that can be deployed on

any document), this entails building a tractable statistical model that

(i) can exploit these indirect signals as sources of distant supervision

and (ii) can also take advantage of any potentially available labeled

data.

Historically, adaptive educational hypermedia systems relied on

the notion of outcomes and prerequisites in implementing adaptive

navigation support techniques [1] that aid users in navigating edu-

cational content. Almost exclusively, however, the annotation of

concepts as outcome or prerequisite has been performed by experts

– a major obstacle to automating and scaling adaptive hypermedia

systems to the web. We believe that by developing a technique for

learning prerequisite/outcome classi�ers from unlabeled textbooks,

our work o�ers an important step forward in the �eld of Adaptive

Tutoring. Because our method relies on natural sources of supervi-

sion (in contrast to expert annotation of outcomes and prerequisites),
available in any textbook, our method can take advantage of the

millions of available textbooks with li�le to no additional e�ort.

�e main contribution of our work is the framework for leveraging

unlabeled textbooks as a source of supervision, more speci�cally:

• A model that takes advantage of the titles of textbook units as

weak labels, in order to learn a prerequisite/outcome classi�er.

• A model that uses the intuition that a concept is usually explained

in one unit as a (so�) constraint during learning, in order to learn

a prerequisite/outcome classi�er.

• A comprehensive evaluation of the two models at the task of

prerequisite/outcome classi�cation on a corpus of six textbooks.

• An end-to-end evaluation of the two models at the task of pre-

dicting prerequisite documents within a web textbook annotated

with a prerequisite graph.

2 RELATEDWORK
Active research on concept analysis for electronic textbooks started

with the emergence of adaptive textbooks in late 1990 [7]. Adaptive

textbooks a�empted to use adaptive navigation support techniques

from the �eld of adaptive hypermedia [1] to guide the reader to

the textbook sections that are most appropriate for his of her level

of knowledge and learning goals. To model reader’s knowledge,

adaptive textbook used traditional overlay knowledge modeling

approach [4, 15] developed in the �eld of Intelligent Tutoring Sys-

tems. With this approach, domain knowledge is modelled as set of

knowledge components frequently called concepts and the current

level of user knowledge is independently measured for each of these

concepts. A learning goal could be also represented in terms of this

domain model as a subset of concepts to master. In this context,

a section in an electronic textbook could be recommended if we

know, which concepts this section is explaining. Indeed, if some

concepts explained in a section are a part of the current learning

goal, but not yet mastered, the section become desirable and can be

recommended to the user. To support this kind of personalization,

adaptive textbooks allowed their creators to indicate the explained

concepts (known as outcome concepts) for each section of the book.

However, outcome concepts alone are not su�cient for good

personalization. While a page might present some desirable out-

come concepts, it might not be ready for the reader to learn since

some earlier concepts (usually referred as prerequisite concepts)
have to be learned �rst. To address these problems, a number of

early textbooks such as ISIS-Tutor [5], KBS-Hyperbook [13], and

Multibook [19] used network domain models with prerequisite

links directly connecting domain concepts. Unfortunately, this

approach originally developed for knowledge sequencing in small-

domain Intelligent Tutoring Systems has not been scaling well

for adaptive textbooks. Developing network domain models was

notoriously hard. Besides, the nature of textbook explanations fre-

quently required authors to refer to prerequisite concepts that were

not anticipated by prerequisite links in the domain model.

To address this problem, some adaptive textbooks such as ELM-

ART [6] and 2L670 [12] suggested to indicate prerequisite concepts

directly for every textbook section. �e model of an adaptive text-

book where every section is indexed with a set of prerequisite and

outcome concepts became very popular and was used by a number

of platforms for authoring Web-based adaptive textbooks such as

InterBook [2], AHA! [11], and NetCoach [20]. �ese platforms have

been used to develop adaptive textbooks for a number of topics.

�e prerequisite/outcome model has been also used in some open
corpus adaptive hypermedia (OCAH) systems [3]. �e goal of an

open corpus approach is to use in an adaptive way any online re-

source not originally considered by authors of an adaptive system.

Indexing an online resource with a set of prerequisite and outcome

concepts is one of the easiest ways to achieve this goal [9, 14].

�e modern trend in OCAH system is gradual transition from

manual content indexing to automatic concept extraction that al-

lows a remarkable increase of scalability [18]. At the moment, many

good concept-extraction approaches have been suggested. How-

ever, automatic separation of prerequisite and outcome concepts is

still a problem with very few explored solutions. Past research ex-

plored two ideas to achieve this goal: the use of author’s knowledge

encapsulated in a sequential organization of a course [8] and more

recently use of machine learning techniques to predict the class of

each concept (prerequisite or outcome) on the basis of contextual

and local features [10, 16, 17]. All of these methods, however, rely

on datasets manually annotated with prerequisites and outcomes.
Our key contribution in this work is a method for learning such

classi�ers from unlabeled textbooks, allowing us to potentially

leverage millions of textbooks available in any discipline.

3 METHOD
In this section, we propose two probabilistic graphical models that

we claim capture the intuition behind the two sources of distant

supervision outlined in the previous section. A �rst step towards

that, however, is to introduce the underlying classi�cation model

for predicting prerequisites/outcomes, which will be subjected to

these two modes of distant supervision.

3.1 Prerequisite/Outcome classi�er
�e fundamental assumption underlying our work is that the au-

thors of instructional content (e.g., a textbook) use di�erent speech

acts when referring to concepts that are outcomes vs. those that
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are prerequisites. Intuitively, we expect an explanation of a concept

to involve acts such as de�ning or giving examples, which in turn

are communicated via act-speci�c vocabulary (e.g., such as, is a, is
an example of, etc.). More generally, we expect that the linguistic

context surrounding the mentions of a particular concept is a good

indicator to di�erentiate between whether the author is explaining

that concept (i.e., outcome) or assuming it as prerequisite knowledge.

Naturally, this suggests a way of exploiting the linguistic context

of a concept to automatically classify whether that concept is an

outcome or a prerequisite. Using logistic regression as a model

for classi�cation, the probability that concept i in unit j (e.g., a

chapter, section, etc.) is an outcome concept (yi j = outcome) can be

expressed as follows:

P (yi j = outcome | xi j ,w) =
1

1 + exp(−wT xi j )
(1)

where xi j represents the features of the context of concept i in unit

j (e.g., chapter or section) and yi j ∈ {outcome,prerequisite}. �e

features encoded by xi j may include things like neighboring words

(unigrams, bigrams, etc.), grammatical roles (e.g., subject, object),

and anything else that might be relevant in helping classify whether

a concept is an outcome or a prerequisite. However, because xi j
summarizes the context of a concept across the entire unit, but a

concept is usually mentioned multiple times and using multiple

terms (e.g., EM and Expectation Maximization), it is important to

be precise about how the contexts of the individual mentions of a

concept are aggregated to build a single unit-level representation

of that concept.

A simple and straightforward way to aggregate the context fea-

tures across the mentions of that concept within a unit is a linear

combination:

xi j =
∑

mention k
of concept i

x(k )i j (2)

where x(k )i j is a feature representation of the context of the kth

mention of concept i in unit j. In all of our experiments in this

work, we consider a single sentence to represent the context of a

mention. Note that we may choose to transform the resulting linear

combination to arrive at the �nal set of features for the concept (e.g.,

we may wish to binarize the features, as we do in our experiments).

3.2 Learning w via distant supervision
In this work, our core task is to learn w, the parameters of the

logistic regression classi�er. In principle, having learned w, we

hope to be able to deploy this classi�er on educational content

beyond the textbook on which it was trained — an important step

towards understanding the educational content on the web.

To this end, we now turn to the problem of learning w. Recall

that our core contribution are two methods that do not rely on the

explicit annotation of prerequisites and outcome labels (i.e., yi j ) and

instead employ weaker and more natural forms of supervision based

on the universal structure of textbooks. Before describing the two

models in technical detail, we brie�y summarize how these models

translate our high-level intuition about textbooks as a source of

supervision, into the formal language of statistical modeling.

• SeqModel: Unit Sequence as a constraint
Hypothesis: Our hypothesis is that the author typically

explains a concept in one location (unit) within a textbook.

Model: �is can be interpreted as an output-space con-

straint on the labels yi j across all units j for a speci�c con-

cept i . In the next section, we show that this constraint can

be re-formulated as a tractable conditional mixture model.

• TitleModel: Unit Titles as weak labels
Hypothesis: Our hypothesis is that the author of a text-

book is more likely to include the concept’s name in the title

of a unit if that concept is an outcome concept, therefore

making titles a source of weak supervision.

Model: We model titles as noisy labels, i.e., corrupted ver-

sion of the true labels yi j which we treat as latent variables.

Anote on outcomes and prerequisites. Note that by employ-

ing a binary classi�er to distinguish between outcomes and prerequi-
sites, we are making a strong assumption about a strict dichotomy,

i.e., if a concept is not an outcome, it’s necessarily a prerequisite and

vice versa. In practice, of course, this is sometimes not the case. A

concept may be referenced in passing, for example, without being

either. At the same time, a concept in a single unit may appear

as both, an outcome and a prerequisite. �e assumption of a strict

dichotomy is a convenient modeling assumption which o�en also

holds in practice. In Section 5.5, we provide further justi�cation to

this assumption.

3.3 Supervision source 1: Unit sequence
We begin by recalling one of our core assumptions about textbooks:

authors typically explain a concept in one location (unit) within a
textbook. Translating this assumption to the language of our model

in Equation 1, we can interpret it as a constraint over a sequence

of prerequisite/outcome labels yi j across all units for every concept.

To make this more explicit, consider the likelihood of observing

all prerequisite/outcome labels y in a single textbook (i.e., for all

concepts and units):

P (y | x,w) =
∏

concept i

∏
unit j

P (yi j | xi j ,w) (3)

Estimating w is straight-forward when the prerequisite/outcome
labels y are available — precisely not the case for a vast majority

of textbooks. �erefore, instead, we are going to rely on a weaker

form of supervision, in the form of a constraint on the output space

(i.e., labels y), encoding our intuition that a writer typically explains

a concept in one unit. We can express the optimization problem for

estimating w, taking this assumption into consideration, as follows:

maximize

w
P (y | x,w)

subject to

∑
j
yi j = 1, ∀i (4)

yi j ∈ {0, 1}, ∀i, j

Directly introducing an arbitrary constraint into the learning pro-

cess is not trivial. However, we observe that a constraint of this

form can be reformulated as an unconstrained conditional mixture

model by introducing a latent variable. Consider a mixture model
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Figure 2: Graphical model instantiations of the distant su-
pervision signals naturally present in textbooks.

of N components, where N is the total number of units in the book.

A component of this mixture can be expressed as follows:

P (yi | zi ,xi ,w) = P (yi,zi = outcome | ·)
∏
j,zi

P (yi j = ¬outcome | ·)

where the latent variable zi ∈ {1, . . . ,N } indicates the unit where

concept i is an outcome concept. Note that the above expression

only de�nes a probability of observing a speci�c sequence yi in

which the outcome unit is given by zi . De�ning a full likelihood

over all possible sequences yi (given zi ) would entail specifying a

probability over all permutations of assignments to the individual

yi j units in the sequence (i.e., for observations where the concept is

explained in a unit other than the unit indicated by zi ). However, we

avoid having to de�ne the likelihood of these other observations by

postulating that each concept is observed as an outcome precisely

in the unit given by zi . �us, although the sequence yi is not

observed directly, we can nevertheless condition on it, in computing

the posterior over zi (which will be used in the E-step described

below).

�e likelihood over all concepts and units in Equation 3 can then

be expressed as follows, taking into account the latent variables:

P (y | x,w) =
∏

concept i

∑
unit j

P (yi | zi = j,x,w)P (zi = j )

which can be interpreted as a classic admixture model, on which

we can bring to bear the standard EM inference procedure. A

representation of this model as a probabilistic graphical model is

given in Figure 2a. Note that by performing EM inference, the

constraint in Equation 4 is implemented in a “so�” way, i.e., the

result of inference is a distribution over units where a concept is

explained. We brie�y describe the key steps of the algorithm:

E-step: �e E-step computes a posterior distribution over the latent

variables zi (recall that zi is an indicator variable, indicating the

unit in the book where a concept i is explained). �e expectation of

the joint log-likelihood is then taken with respect to this posterior.

A�er some algebra, we can show that the posterior over zi is:

P (zi = j | yi ,xi ,w) =
P (yi j = outcome | xi j ,w)∑
j′ P (yi j′ = outcome | xi j′ ,w)

(5)

�e posterior has a natural interpretation: the likelihood that a con-

cept i is explained (i.e., outcome) in unit j is simply the normalized

likelihood that the concept is an outcome concept in unit j given

by the logistic regression model in Equation 1.

M-step: �e M-step is a straight-forward weighted logistic regres-

sion problem, where the weights correspond to the posterior over zi .
We refrain from additional technical detail due to space constraints.

3.4 Supervision source 2: Unit titles
We now shi� our a�ention to the second core assumption about

textbooks: authors are more likely to include the concept in a title if
that concept is explained (i.e., outcome). Translating this assumption

to the language of our model in Equation 1, we can interpret titles

as “weak labels” that are noisy, but correlated with the true labels

yi j . Let ti j ∈ {0, 1} be a binary variable that indicates whether or

not the concept i in unit j appears in the title (e.g., Introduction to
Expectation Maximization). �e convenience of using ti j is that they

are always observed, while the true labels yi j , indicating whether

the concept is a prerequisite or an outcome, are not (i.e., latent).

Figure 2b formalizes this intuition in a probabilistic graphical model.

Now, in addition to the parameters w of the logistic regres-

sion model, we need to introduce two additional parameters that

connect the latent yi j to the observed ti j . �ese parameters are

P (ti j | outcome ) and P (ti j | prereq), de�ned in Table 1 below.

Our intuition suggests that the author is more likely to include

P (ti j = 1 | outcome )
Probability that the concept’s name

appears in the title if that concept is an

outcome

P (ti j = 1 | prereq)
Probability that the concept’s name

appears in the title if that concept is a

prerequisite

Table 1: �e two parameters connecting the appearance of a
concept in the title and its prerequisite/outcome label.

the concept in the title if they intend to explain or introduce the

concept, rather than assumes it as a prerequisite. However, we

expect that the model discovers by itself, the degree to which the

appearance of a title correlates with whether the concept is an out-
come or a prerequisite (via the two parameters P (ti j = 1 | outcome )
and P (ti j = 1 | prereq)). By decoupling the titles and the pre-
requisite/outcome labels within our model, we hope that the titles

“nudge” the learning towards the correct model, while preventing

them from contaminating it with noise.
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We abstain from describing the E-step, as it is fairly straight-

forward to derive for this model. For learning the logistic regression

parameters w, the M-step also reduces to the weighted logistic

regression problem, similar to the model in the previous section. For

the P (ti j = 1 | outcome ) and P (ti j = 1 | prerequisite ) parameters,

interestingly, the M-step can be performed in closed form, while

also providing some insight into the model. An updated estimate

of P (ti j = 1 | outcome ) is computed as follows:∑
i, j δ [ti j = 1]P (yi j = out | ·)∑

i, j δ [ti j = 1]P (yi j = out | ·) +
∑
i, j δ [ti j = 0]P (yi j = out | ·)

where δ[ti j = 1] evaluates to 1 if concept i appears in the title of

unit j , and 0 otherwise (we omit the xi j and w on the conditioning

side of P (yi j = out | w,xi j ) with · to make the notation more

compact). During the M-step, the above expression updates the

estimate of P (ti j = 1 | outcome ) by computing the fraction of

times that the concept’s name appeared in the title while the model

also believed that the concept was an outcome (weighted by the

con�dence of the model). �e same argument applies to estimating

P (ti j = 1 | prereq).
During inference, we may choose to incorporate our prior belief

about what P (ti j = 1 | outcome ) and P (ti j = 1 | prereq) should

be, which may help bias learning towards the right solution in

the regime of li�le to no training data (less than 10% of data). For

example, we may wish to encode our belief that P (ti j = 1 | prereq)
should be very small (i.e., probability that the concept appears in the

title when it is a prerequisite). Our experiments experiments show

that even with weak priors, proposed model can work reasonably

well. A natural choice for incorporating this prior knowledge is

via a Beta distribution, which is a distribution on probabilities. In

Section 5, we will describe our choice for the Beta prior parameters

and their impact on inference in more detail.

4 EVALUATION
A natural metric to evaluate a prerequisite/outcome classi�er (and

the model used to learn it) is a performance measure such as AUC on

held-out data with labeled outcomes and prerequisites. To this end,

we annotate six textbooks with prerequisite and outcome concepts in

each unit, and use these textbooks for both training and evaluation.

In Sections 5.1 and 5.2, we discuss an evaluation of the two proposed

models (SeqModel and TitleModel) at the task of predicting

outcome and prerequisite concepts.

Recall, however, that our ultimate goal is to train a prerequi-
site/outcome classi�er that can be deployed to educational text

outside of the textbooks that were used to train it. To this end, in

Sections 5.4 and 5.5, we explore the ability of the learned models to

generalize to other textbooks and tasks. In the following section,

we brie�y describe the datasets that we used in our evaluations.

4.1 Datasets
In total, we employ seven textbooks for our evaluation: Chris
Bishop’s Pa�ern Recognition and Machine Learning (from hereon

referred to as PRML), �ve OpenStax
2

textbooks in Biology, Anatomy,

2
h�ps://openstax.org/

Chemistry, Psychology and Economics, and an online statistics text-

book from Rice University
3
, from hereon referred to as StatsBook.

�e PRML and OpenStax textbooks are used for evaluating the two

models (SeqModel and TitleModel) at the task of predicting out-
comes and prerequisites. �e StatsBook is used to evaluate the utility

of the predicted prerequisite and outcome concepts at a downstream

task of identifying prerequisite units (documents) in a prerequisite

graph. We brie�y describe each corpus, emphasizing the process by

which we obtained the ground-truth annotation in each textbook.

4.1.1 Bishop’s PRML. We employ the index of the textbook to

identify concepts, and the units where they are explained. PRML
conveniently provides explicit expert-annotation of the units (sec-

tion or subsection) where concepts are explained, by highlighting

the page corresponding to that unit in the index. To identify concept

mentions in the text of the textbook, we perform manual terminol-

ogy normalization, i.e., we compile a list of terms that correspond

to the same concept (e.g., hidden variables, latent variables). �e

advantage of manual term normalization is that we are able to

leverage substantially more contextual features around mentions

that would otherwise be missed via exact term matching. While we

perform normalization manually for this dataset, we expect that

this task would be automated in the future.

4.1.2 OpenStax textbooks. OpenStax textbooks provide a simi-

lar type of expert-annotation as PRML. Each unit in an OpenStax
textbook contains a list of keywords, corresponding to the concepts

that are explained in that unit. We employ these keyword lists at

the beginning of each unit as expert labels, labeling the concept

corresponding to the keyword as an outcome concept. We do not,

however, perform any manual terminology normalization, as we

did in PRML. We will discuss the consequences of this in Section 5.3.

4.1.3 Rice Statistics book. �e Rice University online Statistics

textbook (StatsBook) is unique in that it comes with an expert-

created prerequisite graph. Every unit in the book is annotated with

a set of other units that the author considers to be prerequisites

(i.e., we can interpret this as a directed graph, where an edge exists

between two units if one is a prerequisite of another). �is type

of annotation provides an opportunity to evaluate our model at a

di�erent, but related task, of identifying prerequisite units (docu-

ments). �is task is closer to our broader goal of building on the

results of the prerequisite and outcome classi�cation, to create an

automatic tutoring system that can guide learners through content.

Table 2 shows the statistics of these datasets.

5 EXPERIMENTS
In all experiments, we control the amount of ground-truth labels

revealed to the model during training. �is simulates the scenario

where the annotator provides a small set of seed labels, and the

model relies on both: (i) either the distributional constraint (Se-

qModel) or the weak labels (TitleModel) and (ii) the revealed

ground-truth labels, in order to learn a prerequisite/outcome classi-

�er. �e focus of our evaluation, however, will be on the regime of

very few labeled examples, which we consider to be more realistic

in a practical se�ing. In all our evaluations, we perform 10 fold

3
h�p://onlinestatbook.com/

https://openstax.org/
http://onlinestatbook.com/
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Textbook Units Terms Instances Out P (ti j | out )

Bishop PRML 261 254 3,883 222 30%

Biology 47 637 3,188 637 1.9%

Anatomy 28 1,063 4,850 1,063 1.1%

Chemistry 22 234 1,358 234 3.0%

Psychology 16 185 801 185 5.9%

Economics 35 217 1,449 217 5.5%

StatsBook 113 340 1,879 — —

Table 2: Textbook dataset statistics

cross-validation, and report average AUC at the task of predicting

outcome/prerequisite labels.

5.1 Supervision source 1: Unit sequence
We employ the following models in evaluating the SeqModel:

• Semi-supervised: SeqModel with EM-based learning, employ-

ing a variable amount of ground-truth labels during training.

• Supervised: A fully supervised logistic regression model, em-

ploying a variable amount ground-truth labels during training

(and ignoring unlabeled data).

• Baseline: A naive baseline that considers the unit of the �rst

occurrence of a concept in the book to be the unit where the

concept is an outcome. �is baseline stems from a strong intuition

that an instructor would o�en explain the concept the �rst time

they mention it. A logistic regression model is then trained on

the dataset constructed using this assumption.

5.1.1 PRML evaluation. Figure 4a illustrates the results for the

three models. We observe that the Semi-supervised model out-

performs the Supervised model dramatically in cases with almost

no ground-truth labels. We also observe that the e�ect of additional

training data is fairly small, indicating that the simple distributional

constraint on the labels based on the structure of the textbook is a

powerful enough constraint to induce the labels without explicit

annotation.

We illustrate two interesting posterior distributions over zi ,
which represents the location in the textbook where term i is ex-

plained. �e illustrations are presented in Figure 3a and Figure

3b, and concern two concepts (conditional independence and latent
variable, respectively). �e x-axis in both �gures corresponds to the

linear ordering of the units within the textbook (le� end-point cor-

responds to the beginning of the textbook), and blue stems re�ect

the probability that term i is explained in a given unit (from the pos-

terior distribution over zi ). Red stems correspond to the units where

the term is annotated as an outcome (i.e., ground truth). In Figure 3a,

observe that the term is not explained in its �rst appearance in the

textbook, where the model correspondingly assigns low probability.

Although conditional independence is given a cursory introduction

in the �rst unit (where the posterior assigns a signi�cant portion

of the probability mass), the model correctly assigns the greatest

probability mass to the chapter on graphical models, where the

concept of conditional independence is explained thoroughly.

(a) Conditional independence (b) Latent variable

Figure 3: Posterior distributions over zi , i.e., location (unit)
in the textbook where a concept is explained (i.e., outcome).
�e x-axis corresponds to a linear ordering of the units in
the PRML textbook. Red color identi�es the ground-truth
unit where the concept is claimed to be explained by the au-
thor of the book. See Section 5.1.1 for a discussion.

5.1.2 OpenStax evaluation. We conduct the same evaluation on

the �ve OpenStax textbooks, and present the results in Figure 5.

We observe that the Semi-supervised model continues to excel

over the Supervised model and the Baseline, speci�cally in the

regime of few to no ground-truth labels.

5.2 Supervision source 2: Unit titles
In evaluating theTitleModel, we also compare the Semi-supervised
and fully Supervised models. Additionally, we implement a naive

Baseline that uses titles as a source of direct supervision, i.e.:

• Baseline: A naive baseline that considers the presence of a

concept in the title to be a deterministic indicator that the concept

is an outcome concept. A logistic regression model is trained on

this data, employing a variable amount of ground-truth labels

during training.

We �nd that with the exception of very few labeled examples (e.g.,

4 examples), the model is insensitive to a range of di�erent priors

during learning.

5.2.1 PRML evaluation. Figure 4b illustrates the results for the

three models. Similar to SeqModel, we observe that the Semi-
supervised approach substantially outperforms the Supervised
approach in the regime of li�le to no ground-truth data. Although

the Semi-supervised approach outperforms the Baseline with a

smaller margin when having li�le to no ground-truth data, it signif-

icantly outperforms the Baseline consistently across all regimes.

5.2.2 OpenStax evaluation. We conduct the same evaluation

of the TitleModel on the �ve OpenStax textbooks. We �nd that

while the Semi-supervised approach performs comparably to the

best-performing baseline, it does not, however, show a signi�cant

performance gain for all except one textbook (Economics). In the

next section, we carry out a detailed analysis via a simulation study,

in order to explain the di�erence in performance between the PRML
and OpenStax datasets.
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Figure 4: Using the (a) unit sequence (SeqModel) and (b)
unit titles (TitleModel) of the textbook as sources of dis-
tant supervision in learning a prerequisite/outcome classi-
�er. Evaluation was performed on Bishop’s Pattern Recog-
nition and Machine Learning textbook (PRML). �e perfor-
mance of our model (semi-supervised in blue) provides sig-
ni�cant gains over a fully supervised model (orange) espe-
cially in low training data regime.

5.3 Why is the performance of TitleModel

inconsistent between PRML and OpenStax?
From our experiments on the PRML and OpenStax datasets, we ob-

serve that the TitleModel has a noticeably di�erent performance

between the PRML and OpenStax datasets. From analyzing the

statistics of the datasets in Table 2, our hypothesis is that the poorer

performance of the TitleModel stems from a very low proportion

of titles in which the concept’s name appears when that concept

is explained (i.e., low P (title | outcome ), last column in Table 2).

For example, in PRML, approximately 30% of the units will mention

the concept in the title if that concept is an outcome, in contrast

to less than 6% in the OpenStax textbooks. To test our hypoth-

esis, we conducted a simulation study, where we systematically

generated synthetic “textbooks” with di�erent P (title | outcome )
given a �xed P (title | prereq), and compared the performance of

the Semi-supervised model as a function of P (title | outcome ).
Figure 6 summarizes the results.

We observe that the performance of the Semi-supervisedmodel

increases as a function of P (title | outcome ), substantially im-

proving over the Supervised model in the regime of P (title |
outcome ) > 10%, supporting our hypothesis that low P (title |
outcome ) in OpenStax may be the reason for the Semi-supervised
model’s low gains over the baselines. Two natural questions arise:

(i) why does P (title | outcome ) vary so substantially between the

OpenStax and PRML textbooks and (ii) why does P (title | outcome )
a�ect the performance of the TitleModel? We provide our an-

swers to these questions below.

Why does P (title | outcome ) vary so substantially between
the OpenStax and PRML textbooks? Based on our analysis of

the PRML and OpenStax data, we conclude that the lack of su�-

cient term normalization in the OpenStax data leads to low recall

of concept mentions in the unit titles, and consequently an arti�-

cially lower P (title | outcome ) in the corpus. On the other hand,

because PRML is processed manually (whereas terms are matched

exactly in OpenStax), many more concept mentions are available

in PRML, including mentions that appear in unit titles. To validate

this claim, we have analyzed another textbook, Manning’s Informa-

tion Retrieval
4
, where we manually normalized terminology, and

annotated concepts as prerequisites and outcomes5. We have found

that P (title | outcome ) is between 20% and 40%, depending on how

the annotation of prerequisites and outcomes is performed. �is

further supports our hypothesis that term normalization is critical

for obtaining a su�cient number of mentions of concepts in unit

titles, and consequently a reasonable P (title | outcome ) required

for the model to work well.

Why does P (title | outcome ) a�ect the performance of the
TitleModel? When P (title | outcome ) is low, there are simply too

few titles to be exploited as weak labels during training (P (outcome )
also tends to be low (< 25%) across all datasets). At the same time,

because P (title | prereq) is also consistently low across textbooks,

both P (title | prerequisite ) and P (title | outcome ) become di�cult

to distinguish, making titles a less discriminative signal in learning.

5.4 How generalizable are the learned models?
Recall that the core motivation for building a prerequisite/outcome
classi�er, is to be able to deploy it on educational content that exists

outside textbooks, e.g., webpages. �is raises an important question

about the models proposed in this work: will a prerequisite/outcome
classi�er trained on one textbook, generalize to other content? To

study this question, we carry out an evaluation where we train

a prerequisite/outcome classi�er on one textbook and evaluate it

on the content of the remaining others. Although this task is still

constrained to textbooks (because all of our annotated data consists

of textbooks), the textbooks in our dataset are diverse, and present a

reasonable challenge in testing the “generalizability” of the learned

prerequisite/outcome models.

Figure 7 presents the results in a grid form, where rows and

columns correspond to the textbooks that were used for training

and testing respectively. We evaluate two versions of the SeqModel,

trained with 10% and 90% of the ground-truth data, with AUC×100

displayed within the lower and upper parts of each cell respectively.

Based on these results, we draw the following two conclusions: (i)

models learned using one source generalize to other content (even

across diverse disciplines, such as Anatomy and Economics), and (ii)

although models trained with more ground-truth data generalize

be�er, they do so not by a large margin over models trained with

only 10% of the data. Our key �nding is that the learned models
are general, and capture some universal linguistic features of what it
means to explain a concept, regardless of the concept’s domain.

5.5 Can learned models predict prerequisite
documents?

Recall that one of our goals is to use the outcome and prerequisite
labels as input to a system that would guide the user through

educational content. To this end, an important question is how the

prerequisite and outcome labels can be used to discover prerequisite

documents.

4
h�p://nlp.stanford.edu/IR-book/

5
the textbook is not yet in a su�ciently processed state to be used as one of the datasets
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Figure 5: Using the sequential structure of the textbook as distant supervision in learning a prerequisite/outcome classi�er.
Evaluation was performed on 5 OpenStax textbooks. �e performance of our model (semi-supervised in blue) provides signif-
icant gains over a fully supervised model (orange) especially in low training data regime.
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outcome ) used to generate the synthetic “textbooks”. We
show that a su�ciently large P (title | outcome ) needs to be
present in the dataset, for the model to be able to success-
fully exploit titles as weak labels during training.
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Figure 7: Evaluating the ability of the prerequisite/outcome
classi�ers trained on one textbook (row) to generalize to
other textbooks (column). Upper and lower triangles cor-
respond to the prerequisite/outcome classi�er performance
(AUC×100) trained with the SeqModel using 90% and 10% of
the data respectively.

We follow the work of [17], who have created a dataset anno-

tated with a ground-truth prerequisite graph, i.e., specifying how

units in a textbook (StatsBook) are connected based on their pre-
requisite/outcome relations. A key connection between the task of

predicting prerequisite documents (units) and prerequisite concepts

(our work), is de�ning a function that computes a “prerequisite

score” as a function of a pair of units, based on their prerequisite
and outcome concepts (e.g., returned by our prerequisite/outcome
classi�er). Due to space constraints, we refer the reader to [17],

who de�ne a number of such scoring functions. In this section, we

use the scoring functions and baselines that they develop in order

to evaluate the output of the prerequisite/outcome classi�er, trained

using an approach proposed in this paper.

�e task of predicting a prerequisite document (unit) in a text-

book (StatsBook) can be posed as a binary classi�cation problem, i.e.,

discriminating between documents that are prerequisites vs. those

that are not (as done in [17]). Furthermore, we can analyze this

classi�cation performance as a function of the prerequisite depth,

i.e., the distance between the original document and its prerequi-

site in the prerequisite graph, e.g., Probability is a prerequisite of

Expectation Maximization, but is typically separated by many units

in a textbook (large prerequisite depth) vs. Maximum Likelihood
and Expectation Maximization which may follow each other closely

(low prerequisite depth).

Figure 8 shows the performance of predicting prerequisite docu-

ments as a function of prerequisite depth for three di�erent scoring

functions:

• Model: this scoring function incorporates the output of the

prerequisite/outcome classi�er.

• Baselines: two naive baselines that compute a scoring function

without using the outputs of the prerequisite/outcome classi�er.

See [17] for more detail.

Note that we train the prerequisite/outcome classi�er on a di�erent

textbook (PRML), and deploy the learned model to this task. Note

that prerequisite depth (x-axis in Figure 8) should be interpreted

cumulatively, i.e., as all units at some prerequisite depth that is

lower than x .

Based on Figure 8, we make the following observations: incorpo-

rating the prerequisite/outcome classi�cations from the TitleModel

trained in a semi-supervised way improves performance (over the

baselines) in predicting prerequisite documents. However, we �nd

these performance gains exist only for a model trained with a small

amount of ground-truth data (1% to 10% vs. 100%). We hypothesize

that this is primarily due to the model trained with 100% of the

ground-truth labels over��ing to the training textbook (PRML), and

failing to generalize to StatsBook. Furthermore, in our experiments,

prerequisite/outcome classi�ers trained using the SeqModel did
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Figure 8: We evaluate the TitleModel at the task of predict-
ing prerequisite documents in the StatsBook corpus anno-
tated with a prerequisite graph. �e TitleModelwas trained
on the PRML corpus with variable amount of ground-truth
data. We �nd that fewer ground-truth labels (1% to 10%, with
10% shown in this �gure) yields a model that is able to gen-
eralize better to this task. See Section 5.5 for details.

not substantially improve over the baselines in [17], which we too

a�ribute to the model likely over��ing to the PRML dataset.

5.6 Discussion
A key take-away from our experiments and analysis is that the

sequential structure of a textbook o�ers a more robust form of

distant supervision than textbook titles. �is stems from the fact

that relying on the sequential nature of the book does not strongly

depend on the quality and coverage of the extracted terms, as we

have seen to be the case for a model that relies on titles as weak

supervision. A model that relies on titles as weak supervision,

will require a su�ciently high recall in term extraction, so that a

su�ciently large proportion of title concepts are extracted. Any

model that closely relies on terminology extraction will likely su�er

from similar limitations.

More important towards our broader vision of deploying the

learned prerequisite/outcome classi�ers outside of the books on

which they were trained, we demonstrate that the proposed meth-

ods yield classi�ers that generalize to broader educational content.

6 CONCLUSION
Our key contribution in this paper is the idea and a practical demon-

stration of how textbooks can be leveraged as a rich source of su-

pervision to train models for identifying learning outcomes and

prerequisites in educational texts. We proposed two models that

exploit two simple observations about how textbooks naturally

encode experts’ knowledge implicitly via the structure of the books

they write, in order to learn the prerequisite/outcome classi�ers

without explicit annotation. �is means that our method can utilize

millions of published textbooks as training data.

Furthermore, we demonstrate that the prerequisite/outcome clas-

si�ers learned using our models generalize across diverse learning

material (di�erent disciplines), which implies that these models suc-

cessfully capture some domain-agnostic essence of what it means

to explain a concept. We believe that our work opens doors to a

new generation of adaptive tutoring systems that make sense of the

diverse educational content on the web (by understanding outcome
and prerequisite concepts) and provide personalized guidance to

learners to achieve their learning goals.

To encourage further research in this direction, we release all

datasets annotated as part of this work, as well as all code that can

be used to reproduce our results. �ey can be download at this url.
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